
Effect of thermocapillary convection in an industrial
Czochralski crucible: numerical simulation

V. Kumar a,*, G. Biswas b, G. Brenner a, F. Durst a

a Institute of Fluid Mechanics, LSTM, University of Erlangen-N€uurnberg, Cauerstr. 4, D-91058 Erlangen, Germany
b Department of Mechanical Engineering, Indian Institute of Technology, Kanpur-208016, India

Received 9 April 2002; received in revised form 3 September 2002

Abstract

The influence of thermocapillary or Marangoni convection on the growth of silicon crystals is investigated in an

industrial Czochralski crucible using a quasi direct numerical simulations approach. An optimized parallel-vector

block-structured finite volume Navier–Stokes equations solver is extended to include the effects of thermocapillary

convection. Owing to the presence of surface tension gradients, the magnitude of the radial velocity towards the crystal

becomes high at the free surface. Consequently, the temperature along the free surface is increased. The thermocapillary

convection reduces the temperature fluctuations below the crystal and the free surface of the melt. However, below the

crystal, the turbulent kinetic energy, k, is higher at different melt depths when the thermocapillary effect is taken into
account. It is necessary to study the above-mentioned effects of surface tension driven convection since they influence

the quality of the crystal.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The flow in a Czochralski (Cz) melt is governed by

the interaction of various forces, namely buoyancy,

centrifugal, Coriolis and surface tension [1–4]. The

transport of heat and momentum takes place at different

length and time scales, which makes the process very

difficult to characterise. With the increasing demand for

large-diameter crystals, which requires bigger crucibles,

the magnitudes of different interacting forces increase

and therefore the flow in the melt becomes turbulent

[5,6]. As a consequence, it becomes very challenging to

compute and measure the average and fluctuating

quantities. The flow influences the quality of the crystal

through the convective heat and mass transport. The

surface tension induced flow or thermocapillary con-

vection influences the transport of heat and mass near

the region in the melt where the crystal grows [7,8].

Therefore, it influences the quality of the crystal. The

effect of thermocapillary convection on Cz crystal

growth for high-Prandtl number (Pr) fluids has been the
subject of many investigations [9–14]. In contrast, the

effects of Marangoni convection on low-Pr fluids, such
as silicon (Si), have not been studied sufficiently.

Moreover, the time-dependent three-dimensional (3D)

simulations require high-computational power and time,

which often makes the full simulation unaffordable.

The thermocapillary flow or the flow induced by the

change in surface tension of the fluid due to the presence

of temperature gradients gives rise to the Marangoni-

B�eernard instability in the melt. Ristorcelli and Lumley
[5] discussed various types of instabilities in Cz crystal

growth. The instabilities in the melt give rise to an

asymmetric and time-dependent thermal field. The in-

stability occurs in the melt more easily if thermocapillary

forces are present [15]. Azami et al. [7] observed dark

patterns, so called spoke patterns, on the surface of an Si

melt by using CCD images and they attributed these

patterns to surface tension forces. The influence of
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Marangoni-B�eernard flow on the transport of oxygen in

an Si melt has also been investigated [16]. Kakimoto and

Ozoe [17] concluded that the surface tension driven flow

has to be taken into account in the calculation of oxygen

transfer in the melt. Their 3D simulations reveal that the

residence time of the melt at the free surface is increased

and consequently the rate of evaporation of oxygen

is overestimated if the thermocapillary convection is

neglected. Recently, Li et al. [18] performed two-

dimensional (2D) axi-symmetric and steady-state com-

putations in an Si furnace and investigated the effect of

surface tension gradients on the flow field and on oxygen

concentration in the melt.

For a high-Pr fluid, where convection mainly controls
the transport of heat, the thermocapillary effect is more

significant. Lamprecht et al. [19] reported from their

experiments that the flow velocity at the free surface of a

high-Pr melt is approximately 20 times higher than the
surface velocity for the case when the thermocapillary

force is suppressed. Galazka and Wilke [12] performed

2D simulations in a YAG melt and concluded that

the superposition of the thermocapillary force over the

buoyancy force causes a change in the shape of the

crystal-melt interface. Hirata and Fukuda [20] studied

the effect of the thermal buoyancy, the thermocapillary

effect and forced convection on the shape of the growth

interface. According to them, if the natural convection

dominates over the forced convection, flow near the

surface is strongly directed towards the center of the

crucible and therefore the crystal-melt interface is con-

vex in the downward direction. Jing et al. [10] indicated

in their simulations that the temperature and velocity

fields become time-dependent even at a low Grashof

number (Gr) in the presence of Marangoni convection.
In another study by Jing et al. [11], it was concluded that

the Marangoni instability is the cause of the spoke

patterns at the free surface of LiNbO3 melt.

This work was an attempt to elucidate the effect of

thermocapillary or Marangoni convection on the mean

and fluctuating temperature and velocity fields in a Si

melt during the growth of an Si single crystal. Although

the mean temperature field in an Si melt is not expected

to be influenced much by the thermocapillary force, the

fluctuating temperature and velocity fields are strongly

influenced by the effect of Marangoni convection [21].

Wagner and Friedrich [21,22] performed the direct nu-

merical simulation of a cylindrical Cz configuration

under the influence of Marangoni convection. In their

Nomenclature

cp specific heat

g acceleration due to gravity

Gr Grashof number

Hc height of the melt in the crucible

k turbulent kinetic energy

Ma Marangoni number

p pressure

Pr Prandtl number

Q source term in conservation equations

r radial coordinate

r radial position vector

Rc radius of the crucible

Rs radius of the crystal

Re Reynolds number

t time

T temperature

Tref reference temperature

T 0 temperature fluctuation

T time-averaged temperature

ui ith Cartesian velocity vector
vr time-averaged radial velocity

xi ith Cartesian coordinate
z axial coordinate

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

� emissivity

/ general transport quantity

U energy loss due to dissipation

c temperature coefficient of surface tension

C molecular diffusion coefficient

g normal to free surface

k thermal conductivity

l dynamic viscosity

m kinematic viscosity

x angular velocity

X rotation rate in rpm

q density

qref reference density

r surface tension

rst Stefan–Boltzmann constant

s shear stress

h azimuthal coordinate

n; f tangential coordinates

Subscripts

c crucible

s crystal

env environment

hor horizontal

max maximum

r radial

ref reference
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simulations, the Marangoni number (Ma), was

3:6� 104. They observed an increase of 58% in the

magnitude of the inward radial surface velocity in the

presence of Marangoni convection.

2. Statement of the problem

The geometry of the crucible and the local coordinate

system at a free surface are shown in Fig. 1(a) and (b).

The crucible has a radius Rc ¼ 18 cm and height Hc ¼ 10

cm. The radius of the crystal Rs ¼ 5:2 cm. The radii of
curvature are R1 ¼ 39:2 cm and R2 ¼ 4:3 cm. The mass
of the Si ingot is 20 kg. The crystal is vertically pulled

upwards at an average rate of 2 mm/min. The shape of

the crystal-melt interface is considered to be flat in the

simulations. The crystal and the crucible are rotated in

opposite directions. The rotation rates of the crystal, Xs,

and the crucible, Xc, are 20 and )2 rpm, respectively.
The negative sign here indicates that the rotation is in an

anti-clockwise direction.

In order to retain the advantages of the structured

grids, a grid-mesh with six geometrical blocks was em-

ployed for the simulations. The Navier–Stokes equa-

tions solver is parallelized by assigning the geometrical

blocks to the different processors during the computa-

tion. The skewness of the grid for such a cylindrical

geometry can be well controlled by this block-structured

approach [23]. When block-structured grids are used, the

pressure, pressure correction, flux, velocity and tem-

perature must be exchanged between two neighboring

blocks. Fig. 2 shows a schematic diagram of the block-

structured grid used for the present simulations, which

consists of 106 grid points. The center of the crucible was

mapped with an almost rectangular block. The outer

region was divided into four symmetrical blocks and a

sixth block was created to fit the ellipsoidal bottom of

the crucible. The thermo-physical properties of Si used

in the simulations are provided in Table 1 [23]. The free

surface of the melt is considered to be flat and forces due

to the motion of the gas above the melt are neglected.

Fig. 1. (a) The geometry of the industrial Cz crucible and (b)

local coordinates ðn; g; fÞ on a free surface.

Fig. 2. The block-structured grid-mesh generated for the simulation.
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Based on the maximum temperature difference inside the

melt, ðGr ¼ gbH 3
c DTmax=m

2Þ is equal to 4:1� 108. ðMa ¼
�dr=dT PrDThorðRc � RsÞ=qm2Þ is calculated based on the
measured value of temperature difference on the free

surface, i.e. between the top of the crucible outer wall

and the solid crystal (DThor ¼ 17:0 K) [24] and is equal to
1:2� 105. The reported values of the temperature coef-

ficient of surface tension, c ¼ �dr=dT , lie between

�1:6� 10�5 and �7:5� 10�4 N/m K [7,25], where r is

the surface tension. In the simulations performed in

this work, the upper value of c was taken from Ref. [26].

The Reynolds number based on crucible rotation,

Re ¼ XcR2c=m, is equal to 3176.

3. Mathematical formulation

The transient flow and thermal fields in the melt are

described by 3D time-dependent continuity, momentum

and energy conservation equations. The Boussinesq

approximation for a Newtonian fluid was taken into

account.

3.1. Conservation equations

The conservation equations can be written in the

form of a general transport equation:

o

ot
ðq/Þ þ o

oxi
ðqui/Þ ¼

o

oxi
C
o/
oxi

� �
þ Qj ð1Þ

where / is the general transport quantity, C the molec-

ular diffusion coefficient and Qj the source term of the

conservation equations as defined in Table 2, where gj
[0,0,)9.81] is the gravity vector, p the reference pressure,
b the coefficient of volumetric expansion, Tref the refer-
ence temperature for the Boussinesq approximation,

U ¼ lðoui=oxj þ ouj=oxiÞoui=oxj the energy loss due to
dissipation and Bi ¼ �q½2x � uþ x � ðx � rÞ	 are the
centrifugal and Coriolis forces due to the rotation of the

crucible. The additional terms, Coriolis and centrifugal

forces, appear in the momentum equations because the

equations are written for a non-inertial reference frame.

The continuity and energy equations remain unchanged.

3.2. Boundary and initial conditions

For computing the flow field, the no-slip boundary

condition was applied to the crystal-melt interface and

the crucible wall. The computations were performed in a

rotating reference frame with a velocity equal to the

rotation rate of the crucible ðXcÞ of )2 rpm. Therefore,
all three components of the velocity vector were set zero

at the crucible wall. At the crystal-melt interface, the

velocity u ¼ ðXc þ XsÞ � r was prescribed, where r is the

radial position vector. In order to investigate the influ-

ence of thermocapillary convection, the simulations

were performed with and without the thermocapillary

effect. For the case when the the surface tension forces

are neglected, all components of shear stress tensor are

set equal to zero, i.e. sij ¼ 0, and with the thermocapil-

lary effect, the boundary conditions are

sgg ¼ �2l oug

og
¼ 0

sgn ¼ �l
oun

og
¼ � or

on
¼ � dr

dT
oT
on

sgf ¼ �l
ouf

og
¼ � or

of
¼ � dr

dT
oT
of

ð2Þ

where n, g and f are local coordinates for the each

control volume node at the free surface; n and f are two
local tangential directions and g is orthogonal to both n
and f. The local coordinates n, g and f at a free surface
are shown in Fig. 1(b). The pressure in the gas phase

above the melt and in the melt are considered to be equal

and the radii of curvature of the free surface (Rf and Rn)

are assumed to be infinite in the above boundary con-

ditions.

For the thermal boundary conditions, the measured

temperature from the work of Gr€aabner et al. [24] was
prescribed at the crucible wall. The measured data are

fitted into a ninth-order polynomial as function of the

crucible height and shown in Fig. 3. A fixed temperature

of 1687 K, equal to the melting temperature of Si was

prescribed at the crystal-melt interface. At the free sur-

face of the melt, the radiation loss was taken into ac-

count in the following way:

Table 1

Thermo-physical properties of Si melt

Symbol Value Unit

Tref 1700 K

qref 2570.0 kg/m3

l 7:75� 10�4 N s/m2

b 1:4� 10�4 K�1

k 66.9 W/m K

cp 915.0 J/kg K

m 3:02� 10�7 m2/s

a 2:85� 10�5 m2/s

c �4:3� 10�4 N/m K

� 0.3 –

Pr 0.011 –

Table 2

Variables in general transport equation

Conserved

quantity

/ C Qj

Mass 1 1 0

Momentum uj l � op
oxj

þ qref gjbðT � Tref Þ þ Bi

Thermal energy T k
cp

U
cp
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krT ¼ rst�ðT 4 � T 4envÞ ð3Þ

where k is the thermal conductivity of the melt, rT the

normal temperature gradient at the free surface, rst the
Stefan–Boltzmann coefficient, T the surface temperature
and Tenv ¼ 1600 K the surrounding temperature.

In order to save on the computational time for de-

velopment of the initial thermal field in the crucible, the

temperature was initialized by solving only the steady-

state thermal energy equation with appropriate bound-

ary conditions. This solution was used as an initial guess

for the time-dependent calculations for both the tem-

perature and the velocity field. The crucible was rotated

with a constant speed and initially the flow of the melt

was not influenced by any force of external origin.

Therefore, a uniform solid body rotation was used as an

initial condition for the velocity field in the melt.

4. Solution method

The finite volume method was used for the discreti-

zation of the conservation equations. The computations

were performed for boundary fitted curvilinear grids.

The multigrid technique was adopted to accelerate the

rate of convergence. At each time step, the residual of

each variable was brought down to 5–6 orders of mag-

nitude to achieve convergence. Multigrid techniques are

very sensitive to nuances of the implementations in a

numerical code [27]. Therefore, the implementation of

an implicit boundary condition, such as the Marangoni

boundary condition, together with the multigrid tech-

nique, is not straight forward. It must be kept in mind

that during the restriction and prolongation cycles, the

values of the velocities at the boundary grid nodes must

not be interpolated. The temporal discretization was

performed adopting a second-order fully implicit

scheme. The second-order implicit scheme may produce

oscillatory results for high-Courant number. Therefore a

small time step Dt was employed. A time step of 0.01 s

was used and the data were sampled for time averaging

after every two time steps. The averaged and fluctuating

quantities were computed with these sampled data.

Under-relaxation factors [28] of 0.7, 0.5 and 0.9 were

applied for the velocity components, pressure and tem-

perature, respectively. The Simple algorithm [28] was

used to solve the coupled velocity and pressure fields.

The discretization of the general transport Eq. (1) for

the variable / on a 3D grid-mesh with N control vol-

umes results in a system of equations of the form

C/ ¼ S ð4Þ

where C is an N � N coefficient matrix, / the unknown

column vector of the dependent variables and S the re-

sultant vector of dimension N . The discretized conser-
vation equations were solved iteratively adopting the

strongly implicit procedure (SIP) of Stone [29]. A flow

diagram of the solution algorithm is given in Fig. 4. The

time-dependent computations for a grid-mesh with 106

grid nodes take a considerable time even on vector/

parallel computing machines, although the code used for

the simulations, FASTEST-3D [30], is highly optimized

for these computer architectures.

5. Results and discussions

In this section, the results obtained from the time-

dependent simulations are presented. The velocity and

temperature fields are analyzed and the influence of

thermocapillary forces on the transport of heat and

momentum is discussed.

5.1. Time-averaged velocity field

The instantaneous flow field in the Si melt is asym-

metric and highly random [31], and therefore it is diffi-

cult to predict any definite trend from this highly

random flow field. Therefore, to filter out the fluctua-

tions in the melt and to have an insight into the effect of

the various pertinent input parameters, the velocity field

was statistically averaged by sampling the data after

every second time step. During the simulations, time-

averaging started 60 s after the beginning of the simu-

lation in order to exclude the influence of the initial

quiescent velocity field.

Fig. 5 shows the time-averaged velocity field for the

cases with and without thermocapillary forces. The

method which was adopted to illustrate the velocity

fields here is called the line integral convolution (LIC)

technique, developed by Cabral and Leedom [32]. A

high-velocity free surface motion is observed due to the

thermocapillary effect. Usually the crucible in a Cz fur-

nace is heated along the periphery. The outer bottom

region of the crucible attains a very high temperature.

Typically, the temperature is highest at the junction

Fig. 3. Temperature profile at the crucible wall as a function of

crucible height.
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between the bottom wall and the side wall of the crucible

(shown by A in Fig. 1(a)). The high-temperature regime
around this location initiates the buoyancy driven flow

and there is a rising motion along the crucible wall due

to the buoyancy effect. In both cases, with and without

the surface tension forces, the liquid tends to rise near

the heated side wall and falls near the center of the

crucible. In the absence of the thermocapillary effect,

there is a vortex loop close to the interface of the crystal.

The cooler stream comes down from the crystal, be-

comes locally heated at the bottom of the crucible and

rises to the top surface. The centrifugal force resulting

from the crystal rotation, imparts its effect in the radial

direction. The radially outward motion interacts with

the radially inward flow from the side wall of the cru-

cible and creates an induced vortex (Fig. 5(a)). Fig. 5(a)

Fig. 4. Flow chart of the iterative solution algorithm.
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also illustrates that the recirculation zone near the

crystal and the vortical flow at the edge of the crucible

extend their influence and the liquid trapped between

these two vortex systems is rolled up. This rolled vortex,

together with its left and right neighbors, forms Ray-

leigh–B�eernard like cells. In the presence of Marangoni
convection, the inward radial velocity of the free surface

plays a major role in determining the flow structure in-

side the crucible. The induced vortex, described earlier,

is further strengthened and consequently the cell un-

derneath the crystal changes its pattern (Fig. 5(b)). The

plume initiated at the central bottom part of the crucible

(underneath the crystal) does not extend to the top

surface. The relatively cooler stream coming from the

top interacts with the plume and generates a Rayleigh–

B�eernard cell near the bottom wall of the crucible.

The Pr of a melt plays an important role in deter-
mining the growth of the crystal. At high values of the

Pr, either the momentum boundary layer is of the same

order of magnitude as the thermal boundary layer or the

former is larger than the latter. Thermal convection

flows are concentrated in the thermal boundary layer

regions. On the other hand, at low values of the Pr, the
thermal boundary layer is much larger than the mo-

mentum boundary layer and the influence of the applied

thermal gradients is felt over a greater volume of liquid.

As a result, an early transitions may be induced in the

melt of low Pr-fluids.
The thermocapillary flow is induced by the the sur-

face tension gradients at the free surface. However, it is

envisaged to influence the flow pattern even at a few

millimeters below the free surface of the melt. Therefore,

the azimuthal and time-averaged radial velocities are

plotted along the radial distance at z ¼ 99 and 98 mm

below the free surface of the melt as shown in Fig. 6. At

both positions, the average radial velocity changes its

sign near the side wall of the crucible and the change in

sign is commensurate with the presence of a 3D vortex in

this region. However, the LIC representation of Fig. 5(a)

smears out this considerably small 3D vortex. The

magnitude of the radial velocity near the side wall is

higher when the thermocapillary forces are included and

therefore the vortex near the upper corner of the crucible

influences the orientation of the largest buoyancy plume

in the melt (also see Fig. 5(b)). The creation of this

vortex can be attributed to the buoyancy plume rising

from the outer bottom of the crucible. The plume

develops into a localized hot spot (ring) on the free

surface. This circular zone sets up temperature gradients

in the radially opposite directions. The temperature

gradient between this zone and the cold crystal is re-

sponsible for the free surface flow that has already been

discussed. However, the difference in temperature be-

tween this zone and the relatively cooler crucible wall

culminates in a 3D motion that persists at the upper

corner. At a distance of about 60 mm from the center of

the crucible, there is a significant difference in the radial

velocities for the cases with and without thermocapillary

convection at z ¼ 99 mm. This difference in the radial

velocity can be attributed to the forced convection due

Fig. 5. Time-averaged velocity field (LIC) on a half vertical cut through the crucible (a) without and (b) with thermocapillary forces.

Fig. 6. Azimuthal- and time-averaged radial velocity vr plotted
at different melt heights for the cases with and without the

thermocapillary effect.
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to the crystal rotation. Here the centrifugal vortex bal-

ances the buoyancy driven vortex. On the other hand,

with the inclusion of surface tension driven forces, the

overall flow is radially inward along the free surface of

the melt. It is also apparent from Fig. 5(b) that the effect

of the thermocapillary convection is reduced signifi-

cantly towards the depth of the melt. The mean time-

averaged radial velocities at z ¼ 99 mm are 7.51 and 2.31

mm/s for the cases with and without the thermocapillary

effect, respectively. Below the crystal, the flow is directed

towards the center at both heights (z ¼ 98 and 99 mm)

irrespective of the presence of thermocapillary forces.

The maximum negative velocity occurs at a radial dis-

tance about 35–45 mm for all cases. The inward radial

velocity, which is the outcome of the overall recirculat-

ing flow pattern due to thermal buoyancy, is further

influenced by the Marangoni convection and the mag-

nitude of the inward radial velocity becomes higher. It

attains the highest value at the free surface near the

crystal.

Fig. 7 shows the time-averaged velocity vectors on a

horizontal section, at the center of the first control vol-

ume underneath the free surface, with and without

thermocapillary forces. Every second vector is plotted on

the horizontal plane and in both cases. The rotation of

the crucible and the thermal buoyancy generate motion

in the melt in the r and h directions. The resulting Coriolis
force brings about a significant mixing in the tangential

direction in order to avoid spoke patterns as observed by

Azami et al. [7]. However, the Marangoni effect culmi-

nates in a strong radially inward motion of the melt. If

one approaches the growing crystal from the periphery of

the crucible, the radial velocity shows a progressively

higher magnitude on the free surface at the shorter radial

distances from the crystal in order to satisfy the conser-

vation of mass. This effect is more prominent for the case

with thermocapillary force. The higher mass flow leads to

a higher surface temperature gradient at the edge of the

crystal. The effect of this higher temperature gradient will

be discussed in a subsequent section.

5.2. Time-averaged temperature field

Fig. 8(a) and (b) show the time-averaged temperature

field on a vertical plane for the cases with and without

the effect of thermocapillary forces. From both plots, it

can be seen that there is an increase in temperature from

the inner top location of the crucible to the outer bottom

location. In the presence of the thermocapillary effect,

the temperature gradient along the free surface is re-

duced. A higher temperature gradient exists near the

crystal edge for the case with the Marangoni effect as

compared with the case without the Marangoni effect.

From this typical behavior of the Marangoni convec-

tion, it can be inferred that the numerical grid near the

crystal should be refined locally in order to compute

accurately the surface velocity. In the absence of proper

grid refinement, the surface velocity can be unrealisti-

cally high in the first control volume next to the crystal.

Owing to the thermocapillary convection, the isotherms

penetrate deeper inside the crucible and create a steeper

temperature gradient at the inner bottom of the crucible

Fig. 7. Time-averaged velocity vectors on a horizontal cut one control volume below the surface: (a) without and (b) with thermo-

capillary forces.
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wall as well. As mentioned earlier, the higher tempera-

ture gradients exists around the periphery of the rotating

crystal in the presence of surface tension forces. This can

be clearly observed from the concentrated isotherms

around the crystal. Better control of the diameter of the

growing crystal can be achieved as a consequence of the

formation of the concentrated isotherms. In the case

with thermocapillary convection, the higher radial ve-

locity is likely to enhance the convection coefficient and

thereby the heat transfer. However, owing to the low Pr
of the melt, the liquid temperature below the crystal

does not show appreciable differences for the cases with

and without thermocapillary convection. Although

computations have been carried out with a fixed flat

shape of the crystal-melt interface, it can be concluded

that the thermocapillary convection influences the

growth of the crystal due to the increased heat flux at

the growth interface. This influence is more significant in

the case of high-Pr fluids [12,19].
Fig. 9 shows the azimuthal and time-averaged tem-

perature distribution T at two different melt heights for

the cases with and without the effect of thermocapillary

forces. It can be observed that below the free surface, the

fluid is hotter at both positions for the case when the

thermocapillary effect is included. This is primarily due

to the high-velocity surface flow from the crucible walls

to the center of the melt. Therefore, the vertical tem-

perature gradient at the level of the free surface is de-

creased in the presence of the thermocapillary effect.

Near the periphery of the rotating crystal, this effect is

maximized. From the above discussions it is discerned

that the surface tension driven flow shrinks the colder

region around the crystal. At the free surface, thermo-

capillary force strengthens the buoyancy driven force by

inducing a flow from the crucible wall towards the

growing crystal.

5.3. Fluctuating velocity and temperature fields

The Rayleigh–B�eernard instability in a melt arises

owing to the presence of a cooler layer of the fluid above

a warmer layer. The cooler layer is referred to as an

unstable layer [33]. The thermocapillary convection in-

creases the temperatures of both layers. Moreover, the

temperature difference between the same two layers is

reduced (see Fig. 9). It can be inferred that for the rea-

sons stated above, the temperature fluctuations subside

at the free surface. This can be seen from Fig. 10, which

shows the root mean square (rms) temperature fluctua-

tions (averaged in the azimuthal direction) at two dif-

ferent heights in the melt for the cases with and without

Marangoni convection. Immediately below the crystal

Fig. 8. Time-averaged thermal field on a vertical cut through the crucible (a) without and (b) with thermocapillary forces.

Fig. 9. Azimuthal- and time-averaged temperature T plotted at
two different melt heights for the cases with and without ther-

mocapillary forces.
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and the free surface, the temperature fluctuations are

also decreased for the case when thermocapillary force is

superimposed whereas the velocity fluctuations (the ki-

netic energy of turbulence, k) are intensified, as shown in
Fig. 11. However, Fig. 11 reveals that the velocity fluc-

tuations under the free surface are reduced in the pres-

ence of the thermocapillary effect. This trend is in

contrast to what is observed in the region underneath

the crystal. The reason for this trend can be attributed to

the decreased vertical temperature gradient below the

free surface due to the presence of the thermocapillary

effect as mentioned earlier. The Marangoni effect en-

hances the net inward radial flow, leading to better

thermal mixing and lower temperature fluctuations. The

position of the maximum rms temperature fluctuations

reveals a correlation with the position of the maximum

radial gradient of the average temperature.

6. Conclusions

Numerical simulations were performed in order to

investigate the influence of thermocapillary forces on the

time-averaged and instantaneous velocity and tempera-

ture fields in an industrial Cz crucible for Si growth.

Owing to the presence of the thermocapillary effect, the

following significant observations were made.

• The thermocapillary forces increase the inward radial

velocity on the free surface of the melt. The inward

radial flow near the free surface completely surpasses

the flow due to the centrifugal force near the periph-

ery of the rotating crystal.

• The results indicate the presence of Rayleigh–

B�eernard instabilities and the time-dependent nature
of the melt. The presence of high-temperature gradi-

ents or the concentration of the isotherms around the

crystal edge due to the strong thermocapillary flow

towards the cold crystal ensures better control of

the diameter of the growing crystal.

• The regions underneath and around the crystal be-

come cooler owing to the enhanced flow induced by

the thermocapillary convection. The surface tension

induced flow promotes deep penetration of the tem-

perature fronts inside the melt and reduces the radial

temperature gradients along the free surface of the

melt. On the other hand, the temperature of the free

surface layer is increased owing to enhanced flow ve-

locity towards the crystal from the side hot walls.

• The net radial mass flow rate near the crystal is en-

hanced by thermocapillary driven flow and this

brings about better mixing. As a consequence, the

temperature fluctuations are reduced at the crystal in-

terface, while turbulent kinetic energy is increased

underneath the crystal interface.

• Owing to decreased vertical temperature gradients

below the free surface, the amplitudes of the temper-

ature and velocity fluctuations are reduced near the

free surface of the melt.

The results clearly indicate that even in low-Pr melts,
the thermocapillary effect is important and may signifi-

cantly affect the quality of the crystal by influencing the

turbulent transport of heat and mass near the growing

crystal. As the crystal grows in size, the melt volume in

the crucible decreases. The height of the melt decreases

and the effect of the thermal buoyancy force becomes

weaker than the effect of the thermocapillary force. In

Fig. 10. Root mean square of temperature fluctuations at two

different melt heights for the cases with and without the ther-

mocapillary effect.

Fig. 11. Azimuthal- and time-averaged kinetic energy of tur-

bulence k at different melt heights for the cases with and

without thermocapillary convection.
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such a situation, the importance of Marangoni convec-

tion in a numerical simulation becomes further intensi-

fied.
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